Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7398, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548806

RESUMO

Central retinal artery occlusion (CRAO) is an acute retinal ischaemic disease, but early diagnosis is challenging due to a lack of biomarkers. Blood samples were collected from CRAO patients and cataract patients. Gene expression profiles were distinct between arterial/venous CRAO blood (A-V group) and venous CRAO/control blood (V-C group) samples. Differentially expressed genes (DEGs) were subjected to GO and KEGG enrichment analyses. Hub genes were identified by Cytoscape and used to predict gene interactions via GeneMANIA. Immune cell infiltration was analysed by CIBERSORT. More than 1400 DEGs were identified in the A-V group and 112 DEGs in the V-C group compared to controls. The DEGs in both groups were enriched in the ribosome pathway, and those in the V-C group were also enriched in antigen processing/MHC pathways. Network analysis identified ribosomal proteins (RPS2 and RPS5) as the core genes of the A-V group and MHC genes (HLA-F) as the core genes of the V-C group. Coexpression networks showed ribosomal involvement in both groups, with additional immune responses in the V-C group. Immune cell analysis indicated increased numbers of neutrophils and T cells. Ribosomal and MHC-related genes were identified as potential CRAO biomarkers, providing research directions for prevention, diagnosis, treatment and prognosis.


Assuntos
Oclusão da Artéria Retiniana , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Inflamação/genética , Biomarcadores , Biologia Computacional
2.
Mol Neurobiol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459364

RESUMO

Central retinal artery occlusion (CRAO) is a kind of ophthalmic emergency which may cause loss of functional visual acuity. However, the limited treatment options emphasize the significance of early disease prevention. Metabolomics has the potential to be a powerful tool for early identification of individuals at risk of CRAO. The aim of the study was to identify potential biomarkers for CRAO through a comprehensive analysis. We employed metabolomics analysis to compare venous blood samples from CRAO patients with cataract patients for the venous difference, as well as arterial and venous blood from CRAO patients for the arteriovenous difference. The analysis of metabolites showed that PC(P-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) and octanoylcarnitine were strongly correlated with CRAO. We also used univariate logistic regression, random forest (RF), and support vector machine (SVM) to screen clinical parameters of patients and found that HDL-C and ApoA1 showed significant predictive efficacy in CRAO patients. We compared the predictive performance of the clinical parameter model with combined model. The prediction efficiency of the combined model was significantly better with area under the receiver operating characteristic curve (AUROC) of 0.815. Decision curve analysis (DCA) also exhibited a notably higher net benefit rate. These results underscored the potency of these three substances as robust predictors of CRAO occurrence.

3.
Photodiagnosis Photodyn Ther ; 45: 103933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097121

RESUMO

BACKGROUNDS: Hematoporphyrin monomethyl ether mediated photodynamic therapy (HMME-PDT) has emerged as an alternative approach for port-wine stain (PWS), which was primarily treated with pulsed dye laser (PDL). This study was aimed to evaluate the efficacy and safety of HMME-PDT for PWS and to explore influential factors on the efficacy. METHODS: A total of 254 patients were enrolled. Patients received an intravenous injection of HMME at 5 mg/kg. Lesion areas were irradiated with 532-nm light for 20-25 min. Efficacy was assessed according to fading of lesions and graded as excellent (≥90 %), good (60 %-89 %), fair (20 %-59 %), or poor (<20 %). Adverse events were recorded. Clinical data were analyzed including gender, age, lesion sub-type, lesion location and number of treatments. RESULTS: Overall, 72.4 % of patients achieved an effective response, with 27.6% showing excellent efficacy, 24.8 % showing good efficacy and 20.1 % showing fair efficacy. Only 27.6 % showed poor efficacy. Patients under the age of 18 obtained a better efficacy than adults. Lesions in face showed a better therapeutic outcome than those in neck or trunk and extremities. A more effective response was seen in pink type compared with nodular thickening type. Multiple HMME-PDT treatments could improve the clinical response. Lesion location, lesion sub-type, number of treatments were independent influential factors on efficacy. Adverse events included edema, blister, crust, hypopigmentation, hyperpigmentation, pain, itch and burning sensation. No severe systemic side events were observed. CONCLUSIONS: HMME-PDT was effective for treating PWS and was safe and well-tolerated by patients. It is worth further investigation in efficacy and safety involving more patients from medical institutions in different regions in China. The optimal treatment parameters and treatment protocols are still being explored in the clinical treatment for PWS.


Assuntos
Fotoquimioterapia , Mancha Vinho do Porto , Adulto , Humanos , Fotoquimioterapia/métodos , Mancha Vinho do Porto/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Hematoporfirinas/uso terapêutico , Resultado do Tratamento
4.
Front Endocrinol (Lausanne) ; 14: 1268248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964966

RESUMO

Introduction: Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods: Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results: Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion: This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.


Assuntos
Folículo Ovariano , Progesterona , Humanos , Feminino , Progesterona/metabolismo , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Ovário , Células Tecais/metabolismo
5.
Burns Trauma ; 11: tkad041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849944

RESUMO

Background: Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods: The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results: Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions: The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.

6.
Reprod Biomed Online ; 47(5): 103256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37690342

RESUMO

RESEARCH QUESTION: How do platelet-rich plasma products like human platelet lysate (HPL) and umbilical cord plasma (UCP) affect the growth and survival of isolated human pre-antral follicles in vitro? DESIGN: Human pre-antral follicles (n = 724; mean diameter: 75 µm; range: 46-237 µm) were isolated from ovarian medulla donated by 14 patients undergoing unilateral oophorectomy for ovarian tissue cryopreservation. Follicles were encapsulated in 0.5% alginate and cultured for 8 days in media supplemented with 5% fetal bovine serum (FBS) (n = 171), 2.5% human serum albumin (HSA) (n = 159), 5% HPL (n = 223) or 5% UCP (n = 171). RESULTS: The survival probability was significantly higher in the group supplemented with HPL (80%) compared with the other three groups: FBS (54%, P < 0.001); HSA (63%, P = 0.004) and UCP (29%, P < 0.001). Surviving follicles in the UCP group had less defined follicular membranes and decompacted granulosa cell layers. The median growth of surviving follicles was significantly (P < 0.001) larger in the HPL group (73 µm) compared with any of the other three groups: HSA (43 µm); FBS (40 µm) UCP (54 µm). A descriptive analysis of follicular secretion of anti-Müllerian hormone and oestradiol did not reveal any difference between the groups. The detectability of follicular genes was high for AR (100%), AMHR2 (100%) and FSHR (76%), whereas few follicles expressed LHR (20%). CONCLUSION: Human platelet lysate significantly improved survival and growth of cultured human pre-antral follicles compared with FBS, HSA and UCP. The use of HPL is a valuable improvement to culture human pre-antral follicles but further studies will have to prove whether the superiority of HPL translates into better quality oocytes.


Assuntos
Oócitos , Folículo Ovariano , Feminino , Humanos , Ovário , Células da Granulosa , Criopreservação
7.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569872

RESUMO

This study aimed to optimise culture conditions for murine preantral follicles to improve their growth and survival. Preantral follicles (diameter 100-130 µm) were isolated from prepubertal NMRI mice and individually cultured within alginate beads for 12 days. Three conditions were evaluated: (1) follicle re-encapsulation on day 6 of culture-reducing alginate concentration (0.5% to 0.25% w/v), (2) the presence of oestradiol (E2), and (3) increased follicle-stimulating hormone (FSH) concentration in the culture medium (from 10 to 100 mIU/mL FSH). Follicle morphology and growth, as well as anti-Müllerian hormone (AMH) production, were evaluated. From day 8, re-embedded follicles had a larger average diameter compared to follicles without alginate re-encapsulation (0.5% and 0.25% groups, p < 0.05). Oestradiol (1 µM) had a significantly positive effect on the mean follicular diameter and antrum formation (p < 0.001). Moreover, follicles cultured with 100 mIU/mL FSH showed faster growth (p < 0.05) and significantly higher antrum formation (p < 0.05) compared to the low FSH group. Nevertheless, AMH production was not affected by any of the culture conditions. In conclusion, the growth and survival of mouse preantral follicles during a 12-day period were improved by altering the alginate concentration midways during culture and adding E2 and FSH to the culture medium.


Assuntos
Estradiol , Hormônio Foliculoestimulante , Feminino , Camundongos , Animais , Estradiol/farmacologia , Hormônio Foliculoestimulante/farmacologia , Hidrogéis/farmacologia , Folículo Ovariano , Meios de Cultura , Alginatos/farmacologia
8.
Front Mol Biosci ; 10: 1200354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388244

RESUMO

Background: Ovarian Serous Adenocarcinoma is a malignant tumor originating from epithelial cells and one of the most common causes of death from gynecological cancers. The objective of this study was to develop a prediction model based on extracellular matrix proteins, using artificial intelligence techniques. The model aimed to aid healthcare professionals to predict the overall survival of patients with ovarian cancer (OC) and determine the efficacy of immunotherapy. Methods: The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection was used as the study dataset, whereas the TCGA-Pancancer dataset was used for validation. The prognostic importance of 1068 known extracellular matrix proteins for OC were determined by the Random Forest algorithm and the Lasso algorithm establishing the ECM risk score. Based on the gene expression data, the differences in mRNA abundance, tumour mutation burden (TMB) and tumour microenvironment (TME) between the high- and low-risk groups were assessed. Results: Combining multiple artificial intelligence algorithms we were able to identify 15 key extracellular matrix genes, namely, AMBN, CXCL11, PI3, CSPG5, TGFBI, TLL1, HMCN2, ESM1, IL12A, MMP17, CLEC5A, FREM2, ANGPTL4, PRSS1, FGF23, and confirm the validity of this ECM risk score for overall survival prediction. Several other parameters were identified as independent prognostic factors for OC by multivariate COX analysis. The analysis showed that thyroglobulin (TG) targeted immunotherapy was more effective in the high ECM risk score group, while the low ECM risk score group was more sensitive to the RYR2 gene-related immunotherapy. Additionally, the patients with low ECM risk scores had higher immune checkpoint gene expression and immunophenoscore levels and responded better to immunotherapy. Conclusion: The ECM risk score is an accurate tool to assess the patient's sensitivity to immunotherapy and forecast OC prognosis.

9.
Heliyon ; 9(5): e15828, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37159702

RESUMO

Background: The blood-brain barrier (BBB) is a natural physiological barrier that protects the central nervous system from foreign substances and limits the delivery of drugs to the brain. Nanotechnology has opened up new possibilities for drug delivery in the brain. Over several decades, various Nanoparticle Drug Delivery Systems (NDDS) that can cross the BBB have been developed for targeted delivery in the brain. To gain a comprehensive understanding of the current research hotspots and trends of NDDS across the BBB, this paper employs bibliometric analysis of articles published in the core database of Web of Science (WOS) from 1996 to 2022. Method: A search for relevant research literature on NDDS that can cross the BBB was conducted in the Web of Science database, covering the period from 1996 to 2022. The Bibliometrix R-4.0 software package was used to analyze data related to the countries of publication, research institutions, journals, citations, and keywords. The analysis aimed to identify the co-occurrence of keywords in the documents, including their titles and abstracts. Additionally, cooperative network analyses of authors, institutions, and countries of publication were conducted. Results: A total of 436 articles were analyzed, originating from 174 journals and 13 books, with the majority published in Q1 and Q2 journals. Contributors from 53 countries or regions participated in the publication of these articles, with China, the United States, and India having the highest number of articles by correspondent authors, and China, the United States, and Germany being the most cited countries. Fudan University, Hacettepe University, and Sichuan University were the top three institutions with the most publications. Among the 436 articles analyzed, 1337 keywords and 1450 keywords plus were identified. Factor analysis grouped the keywords plus into two categories: drug delivery systems, polymeric nanoparticles, gold nanoparticles, transferrin, and others, and drug, delivery, efficiency, expression, and mechanism. Conclusion: The research on NDDS that can cross the BBB is gradually receiving attention, and the recognition and cooperation in this field have increased.

10.
Braz J Microbiol ; 54(2): 873-883, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37145297

RESUMO

Chromoblastomycosis is a fungal disease presented with local warty papule, plaque, and verrucous nodules. In addition, the incidence and drug resistance of chromoblastomycosis are increasing each year worldwide. Photodynamic therapy is a promising method to treat mycoses. The purpose of this study was to evaluate the effect of new methylene blue (NMB)-induced PDT on multidrug-resistant chromoblastomycosis in vitro. We isolated one wild-type strain pathogen from one clinical patient diagnosed with chromoblastomycosis for over 27 years. The pathogen was identified by histopathology, the morphology of fungal culture, and genetic testing. Drug susceptibility testing was performed on the isolate. It was cultured with logarithmic growth phase spore in vitro and incubated with different concentrations of NMB for 30 min, and received illumination by red light-emitted diode with different light doses. After photodynamic treatment, the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted. The pathogen was Fonsecaea nubica, and it was resistant to itraconazole, terbinafine, amphotericin B, voriconazole andcaspofungin. At the same NMB concentration, the sterilization efficiency of NMB-photodynamic therapy (PDT) on F. nubica increased with increasing light intensity; F. nubica was completely killed at 25 µmol/L NMB with a light dose of 40 J/cm2 or 50 µmol/L NMB and light doses of ≥ 30 J/cm2. SEM and TEM observed ultrastructural changes after PDT. NMB-PDT inactivates the survival of multidrug-resistant F. nubica in vitro; it therefore has the potential to become an alternative or adjuvant treatment for refractory chromoblastomycosis.


Assuntos
Ascomicetos , Cromoblastomicose , Mycobacterium tuberculosis , Humanos , Antifúngicos/uso terapêutico , Cromoblastomicose/tratamento farmacológico , Cromoblastomicose/microbiologia , Cromoblastomicose/patologia , Testes de Sensibilidade Microbiana
11.
Photodiagnosis Photodyn Ther ; 39: 102900, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525433

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is an effective method to inactivate microorganisms which is based on reactive oxygen species (ROS) generated by photosensitizer and light at certain wavelength. Exposure to sub-lethal dose of PDT (sPDT) could activate the regulatory systems in the surviving bacteria in response to oxidative stress. This study aimed to evaluate the effect of sPDT on efflux pump and biofilm formation in Staphylococcus aureus (S. aureus), which are two important virulence related factors. METHODS: Different light irradiation time and toluidine blue O (TBO) concentrations were tested to select a sPDT in methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA). Efflux function was evaluated with EtBr efflux experiment. Biofilm formation was evaluated by crystal violet staining. Gene expressions of norA, norB, sepA, mepA and mdeA following sPDT were analyzed with real-time PCR. RESULTS: Sub-lethal PDT was set at 40 J/cm2 associated with 0.5 µM TBO. Efflux function was significantly inhibited in both strains. The average expression levels of mdeA and mepA in MSSA and MRSA were increased by (3.09, 1.77, 1.57) and (3,44, 1.59, 6.29) fold change respectively, norB and sepA were decreased by (3.77, 6.14) and (3.02, 3.47) fold change respectively. Expression level of norA was decreased by 5.44-fold change in MSSA but increased by 2.80-fold change in MRSA. Biofilm formation in both strains was impeded. CONCLUSIONS: TBO-mediated sPDT could inhibit efflux pump function, alter efflux pump encoding gene expression levels and retard biofilm formation in MSSA and MRSA. Therefore, sPDT is proposed as a potential adjuvant therapy for infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Humanos , Meticilina/farmacologia , Meticilina/uso terapêutico , Fotoquimioterapia/métodos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Cloreto de Tolônio
12.
Photodiagnosis Photodyn Ther ; 39: 102902, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537700

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is resistant to conventional antimicrobial therapies, allowing for high morbidity and mortality. Photodynamic antimicrobial chemotherapy (PACT) is one method that combines visible harmless light with the optimum wavelength with photosensitizers or dyes, producing singlet oxygen (1O2) and reactive oxygen strains (ROS), making permanent damages to the target cells. The purpose of this research is to evaluate the suppression efficacy of toluidine blue O (TBO)-mediated PACT on mature MRSA biofilm in vitro. METHODS: In this study, the 48 h mature biofilm of the multidrug-resistant Staphylococcus aureus strain MRSA252 was used. The photodynamic therapy (PDT) group was treated with different concentrations of TBO (0.5, 0.75, 1.0 or 1.25 µM) and different doses of red light (635 ± 5 nm wavelength; 30 or 50 J/cm2). The biofilms viability after PDT were evaluated by crystal violet (CV) staining assay and {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetra-zolium hydroxide} (XTT) assay; meanwhile, the morphological changes were detected by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), separately. Moreover, the biofilms virulence was evaluated by red blood cell (RBC) hemolysis assay and staphylococcal virulence factor enterotoxins A (SEA) detected by enzyme linked immunosorbent assay (ELISA). After PDT, the biofilm was re-cultured for extra 48 h. Its formation viability and virulence were detected again. All data were analyzed by ANOVAs followed by the Games Howell post hoc test (α = 0.05). RESULTS: The biofilm was inactivated about 2.3 log10 at 1.25 µM with 30 J/cm2 illumination, and 3.5 log10 with 50 J/cm2 after PDT (P<0.05). XTT assays demonstrated the viability of mature MRSA biofilms was reduced after PACT. PDT group shows a distinct reduction in RBC hemolysis rate and the concentration of SEA compared to the control groups. The morphological features of the biofilms showed great changes, such as shrinkage, fissure, fragmentation, and rarefaction after being treated by TBO-PDT and observed by SEM. The recovery of the structure and virulence of biofilm were suppressed after PDT. CONCLUSION: TBO-mediated PDT could destroy the biofilm structure, reduce its virulence and depress its self-recovery.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Antibacterianos/farmacologia , Biofilmes , Hemólise , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Cloreto de Tolônio/farmacologia
13.
Glob Health Res Policy ; 7(1): 12, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488305

RESUMO

BACKGROUND: With the continuation of the COVID-19 pandemic, some COVID-19 patients have become reinfected with the virus. Viral gene sequencing has found that some of these patients were reinfected by the different and others by same strains. This has raised concerns about the effectiveness of immunity after infection and the reliability of vaccines. To this end, we conducted a systematic review to assess the characteristics of patients with reinfection and possible causes. METHODS: A systematic search was conducted across eight databases: PubMed, Embase, Web of Science, The Cochrane Library, CNKI, WanFang, VIP and SinoMed from December 1, 2019 to September 1, 2021. The quality of included studies were assessed using JBI critical appraisal tools and Newcastle-Ottawa Scale. RESULTS: This study included 50 studies from 20 countries. There were 118 cases of reinfection. Twenty-five patients were reported to have at least one complication. The shortest duration between the first infection and reinfection was 19 days and the longest was 293 days. During the first infection and reinfection, cough (51.6% and 43.9%) and fever (50% and 30.3%) were the most common symptoms respectively. Nine patients recovered, seven patients died, and five patients were hospitalized, but 97 patients' prognosis were unknown. B.1 is the most common variant strain at the first infection. B.1.1.7, B.1.128 and B.1.351 were the most common variant strains at reinfection. Thirty-three patients were infected by different strains and 9 patients were reported as being infected with the same strain. CONCLUSIONS: Our research shows that it is possible for rehabilitated patients to be reinfected by SARS-COV-2. To date, the causes and risk factors of COVID-19 reinfection are not fully understood. For patients with reinfection, the diagnosis and management should be consistent with the treatment of the first infection. The public, including rehabilitated patients, should be fully vaccinated, wear masks in public places, and pay attention to maintaining social distance to avoid reinfection with the virus.


Assuntos
COVID-19 , Reinfecção , COVID-19/epidemiologia , Humanos , Pandemias , Reinfecção/epidemiologia , Reprodutibilidade dos Testes , SARS-CoV-2
14.
Photodiagnosis Photodyn Ther ; 38: 102816, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35378277

RESUMO

BACKGROUND: Several studies have suggested the effectiveness of photodynamic therapy (PDT) for wound healing. Macrophages are critical immune cells necessary for regulated inflammation during wound repair. However, the available information regarding the effects of PDT on macrophages during cutaneous wound healing remains insufficient. This study aimed to further investigate these aspects in vivo and in vitro. METHODS: Mouse full-thickness wound models were used as the study samples to investigate the therapeutic effects and mechanisms of 5-aminolevulinic acid (ALA) PDT. Wound healing rate, granulation tissue formation, local inflammation, M1/M2 macrophages differentiation, were measured at different time points treated by ALA-PDT. The polarization of macrophages induced by ALA-PDT was further evaluated in vitro using PCR and western blot analysis. RESULTS: ALA-PDT could promote formation of granulation tissue, increase inflammatory infiltration and activate M1 macrophages in the early stage of injury. While, ALA-PDT could also facilitate absorption of granulation tissue, inhibit inflammatory infiltration and enhance M2 macrophages polarization in the later stage of wound repair. In vitro, ALA-PDT could modulate the ratio of M2 polarization to M1 polarization via NF-κB signaling pathway. CONCLUSIONS: ALA-PDT topical application stimulates wound healing by regulating formation of granulation tissue, inflammatory process and M1/M2 macrophages differentiation. The study places a preliminary theoretical basis for topical ALA-PDT to be administered clinically in cutaneous wounds healing.


Assuntos
Ácido Aminolevulínico , Fotoquimioterapia , Ácido Aminolevulínico/uso terapêutico , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Macrófagos , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cicatrização
15.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454778

RESUMO

Testicular Germ Cell Tumour (TGCT) is one of the most common tumours in young men. Increasing evidence shows that the extracellular matrix has a key role in the prognosis and metastasis of various human cancers. This study analysed the relationship between the matrix protein ameloblastin (AMBN) and potential biological markers associated with TGCT diagnosis and prognosis. The relationship between AMBN and TGCT prognosis was determined by bioinformatic analysis using the expression profiles of three RNAs (long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs) from The Cancer Genome Atlas (TCGA) database, and available clinical information of the corresponding patients. Prediction and validation of competitive endogenous RNA (ceRNA) regulatory networks related to AMBN was performed. AMBN and its associated ceRNA regulatory network were found to be related to the recurrence of TGCT, and LINC02701 may be used as a diagnostic factor in TGCT. Furthermore, we identified PELATON (Plaque Enriched LncRNA In Atherosclerotic And Inflammatory Bowel Macrophage Regulation) as an independent prognostic factor for TGCT progression-free interval.

16.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055072

RESUMO

Human ovarian cells are phenotypically very different and are often only available in limited amounts. Despite the fact that reference gene (RG) expression stability has been validated in oocytes and other ovarian cells from several animal species, the suitability of a single universal RG in the different human ovarian cells and tissues has not been determined. The present study aimed to validate the expression stability of five of the most used RGs in human oocytes, cumulus cells, preantral follicles, ovarian medulla, and ovarian cortex tissue. The selected genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-2-microglobulin (B2M), large ribosomal protein P0 (RPLP0), beta-actin (ACTB), and peptidylprolyl isomerase A (PPIA). Overall, the stability of all RGs differed among ovarian cell types and tissues. NormFinder identified ACTB as the best RG for oocytes and cumulus cells, and B2M for medulla tissue and isolated follicles. The combination of two RGs only marginally increased the stability, indicating that using a single validated RG would be sufficient when the available testing material is limited. For the ovarian cortex, depending on culture conditions, GAPDH or ACTB were found to be the most stable genes. Our results highlight the importance of assessing RGs for each cell type or tissue when performing RT-qPCR analysis.


Assuntos
Biomarcadores , Células do Cúmulo/metabolismo , Regulação da Expressão Gênica , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Estabilidade de RNA , Transcriptoma
17.
Photodiagnosis Photodyn Ther ; 35: 102387, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34107318

RESUMO

Erosive adenomatosis of the nipple (EAN) is an uncommon, benign neoplasm that involves the nipple. Traditional treatments include complete surgical excision, limited forms of complete surgical excision and Mohs micrographic surgery. Here, we report a case of a 40-year-old woman with a 2-year history of asymptomatic erosion, papillomatous hyperplasia and intermittent serosanguineous discharge on her right nipple. Histopathological examination confirmed the diagnosis of EAN. She was treated with 5-aminolevulinic acid induced photodynamic therapy (ALA-PDT) for 2 sessions with 2 weeks intervals. No recurrence occurred within 6 months. Therefore, our report suggested that ALA-PDT is a possible method to treat EAN, especially in patients who have the need of breastfeeding and cosmetic appearance, but this needs to be examined in a larger clinical trial.


Assuntos
Papiloma , Fotoquimioterapia , Adenoma , Adulto , Ácido Aminolevulínico/uso terapêutico , Neoplasias da Mama , Feminino , Humanos , Mamilos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
18.
Front Psychol ; 11: 542093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329177

RESUMO

Expectation of others' cooperative behavior plays a core role in economic cooperation. However, the dynamic neural substrates of expectation of cooperation (hereafter EOC) are little understood. To fully understand EOC behavior in more natural social interactions, the present study employed functional near-infrared spectroscopy (fNIRS) hyperscanning to simultaneously measure pairs of participants' brain activations in a modified prisoner's dilemma game (PDG). The data analysis revealed the following results. Firstly, under the high incentive condition, team EOC behavior elicited higher interbrain synchrony (IBS) in the right inferior frontal gyrus (rIFG) than individual EOC behavior. Meanwhile, the IBS in the IFG could predict the relationship between empathy/agreeableness and EOC behavior, and this prediction role was modulated by social environmental cues. These results indicate the involvement of the human mirror neuron system (MNS) in the EOC behavior and the different neural substrates between team EOC and individual EOC, which also conform with theory that social behavior was affected by internal (i.e., empathy/agreeableness) and external factors (i.e., incentive). Secondly, female dyads exhibited a higher IBS value of cooperative expectation than male dyads in the team EOC than the individual EOC in the dorsal medial prefrontal cortex (DMPFC), while in the individual EOC stage, the coherence value of female dyads was significantly higher than that of male dyads under the low incentive reward condition in the rIFG. These sex effects thus provide presumptive evidence that females are more sensitive to environmental cues and also suggest that during economic social interaction, females' EOC behavior depends on more social cognitive abilities. Overall, these results raise intriguing questions for future research on human cooperative behaviors.

19.
Cytokine ; 136: 155292, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950809

RESUMO

Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a crucial role in osteoporosis. Irisin, an exercise-induced muscle-dependent myokine, has been reported to stimulate the development of brown adipose tissue and regulate energy expenditure. The present study aimed to investigate the effects of irisin on autophagy in BMSCs. Furthermore, the osteogenic differentiation ability was evaluated, as well as the activation of autophagy. It was found that 40 µM irisin for 48 h was an appropriate concentration and time period, with regards to cell viability, which was measured with a Cell Counting Kit-8. Moreover, the increasing expression levels of microtubule-associated protein light chain 3 (Lc3)-I/II and autophagy related 5 (Atg5) by irisin demonstrated the upregulation of autophagy. Mechanistically, bafilomycin A1 and Atg5 small interfering RNA were used to evaluate the possible mechanism of autophagy activated by irisin, and it was identified that irisin may upregulate autophagy by increasing the Atg12-Atg5-Atg16L complex. In addition, with the increasing level of autophagy, osteogenesis and the Wnt/ß-catenin signal pathway were also enhanced. However, inhibition of autophagy by bafilomycin A1 negatively regulated osteogenic differentiation. Collectively, the present results suggested that irisin may stimulate autophagy in BMSCs and that osteogenic differentiation may be enhanced by stimulating autophagy.


Assuntos
Autofagia/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Fibronectinas/imunologia , Células-Tronco Mesenquimais/imunologia , Osteogênese/imunologia , Via de Sinalização Wnt/imunologia , Animais , Camundongos
20.
Photodiagnosis Photodyn Ther ; 27: 268-275, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31185325

RESUMO

Hemoporfin (hematoporphyrin monomethyl ether, HMME) is a relatively new photosensitizer that has achieved success in mediating photodynamic therapy (PDT) of port wine stains in China. However, the exact mechanism of Hemoporfin PDT on endothelial cell proliferation and apoptosis is unclear. The present study investigated the mechanism of action of HMME-PDT on endothelial cells in vitro. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro. HMME-PDT treated the cells and detected the phototoxicity by cell counting kit-8 (CCK-8) assay, apoptosis by Flow cytometry assay and quantification of the secreted VEGF-A levels using ELISA and different proteins expression by quantitative real-time PCR and Western blotting. Phototoxicity was caused in an HMME and light dose-dependent manner. Apoptosis was induced as shown by Annexin-V/propidium iodide staining and morphological changes. The Bax/Bcl-2 ratio was increased as shown by Western blot for protein and RT-qPCR for mRNA. VEGF-A expression was reduced and signaling molecules in the Akt/mTOR pathway were inhibited as shown by ELISA and immunofluorescence. Hemoporfin (hematoporphyrin monomethyl ether, HMME) has achieved success in mediating photodynamic therapy (PDT) of port wine stains. The clinical success of HMME-PDT with low recurrence rates can be explained by inhibition of endothelial cell proliferation through VEGF/Akt /mTOR pathway.


Assuntos
Hematoporfirinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Mancha Vinho do Porto/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Genes bcl-2/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/efeitos dos fármacos , Humanos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Proteína X Associada a bcl-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...